
2

1

4

3

6

5

7

@CSTeachingTips CSTeachingTips.org facebook.com/csteachingtips

to help students see computing around them.
Point out products of CS

to connect programming with students’ everyday life.
Describe programs as instructions

to demystify terms describing CS jobs.
Introduce synonyms for CS

to encourage students to embrace mistakes.
Explain that bugs are expected

to show problem solving strategies.
Model programming

to dispel stereotypes about CS.
Promote collaboration & creativity

to help students see how they can continue learning CS.
Publicize resources for learning CS

CSTeachingTips.org/Tips-for-Introducing-Computing

Introducing CS
Tips for

Programming
is just bossing
a computer

around!

If you want
to learn more
CS, you can

find resources
at …

Even for
professional

programmers,
programs never

work at first!

You’ll work
together today
like computer
scientists do!

That didn’t
work like I

expected! What
could I try

next?

Traffic
lights are

controlled by
computer
programs!

There are
lots of names
to describe
doing CS!

 Describe programs as instructions
Explain that programming languages are just languages that the computer understands and
programs are just instructions for the computer to follow. This can help students see that
programming relates to their experiences giving and receiving instructions.

 Point out products of CS
Computer scientists are involved in the creation of most everyday objects. Students might
know that computer scientists make apps, but might not realize that computer science is
behind lots of everyday objects (e.g. traffic lights, microwaves, cash registers). You can
have students list things that are important to them and discuss how those things rely on
computers (and therefore computer science).

 Explain that bugs are expected
School sometimes reinforces the idea that mistakes are bad. Instead, focus on how mistakes
are part of the learning process and that this is particularly true in programming. Explain
that when professional programmers write code, it rarely works the first time and that the
most important thing is continuing to try things even if they don’t work at first. Give
examples of the errors that students might see to help them decode the error message.
Explain that nothing they do will damage to the computer.

 Introduce synonyms for CS
Students have likely heard a lot of terms about CS: programmer, hacker, software engineer,
coder, computer scientist, or developer. To demystify CS, explain that the differences
between these terms aren’t particularly important. Tell students see that CS has a lot of
specialties that have different balances of programming, design, math, and problem solving.

 Promote collaboration and creativity
Try to challenge stereotypes of CS as solitary and boring by providing opportunities for
collaboration and creativity. Tell students that computer scientists always work in teams to
solve big problems. Consider looking up the number of employees at a big tech company
students have heard of to illustrate that computer scientists work together. Explain that
computer scientists use creativity when they’re inventing new products and when they’re
coming up with creative ways to solve problems.

 Model programming
When students are new to programming, they don’t know what to expect. Display your
screen while programming to model the process of tinkering, reading error messages,
making and fixing mistakes, and problem solving within a programming environment.
Students likely won’t be able to replicate all of the things you demonstrated, but it can be
helpful for them to see what activities programming involves.

 Publicize resources for learning CS
Students might not know how they can pursue more CS learning outside of class. Give
examples of what they might want to learn to make and help them identify resources for
learning CS online. There are lots of free resources available online!

7 	

6 	

5 	

4 	

2 	

1 	

3 	

